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Electrophilic early transition-metal and f-element alkyl com­
plexes undergo a variety of insertion, elimination, C-H activa­
tion/abstraction, and hydrogenolysis reactions.1 The role of these 
reactions in catalytic olefin polymerization2 and olefin and alkyne 
hydrogenation3 has been elucidated, and an understanding of their 
mechanisms is emerging.4,5 A current challenge is to develop 
other catalytic processes which utilize these key reactions.6,7 We 
report that our initial studies in this area with cationic Zr alkyl 
complexes8 have led to the discovery of a zirconium-catalyzed 
process for the coupling of olefins with 2-Me-pyridine (a-picoline) 
which involves sequential aryl C-H activation (C-H abstraction), 
olefin insertion, Zr-R bond hydrogenolysis, and ligand exchange 
steps. 

While neutral Cp*2MR complexes (M = group III, lanthanide) 
undergo C-H activation reactions with hydrocarbons,53,9 we an­
ticipated that this would be less likely for closely related cationic 
Zr compounds [Cp2Zr(R)(L)] [BPh4] due to the presence of the 
ligand L and the counterion. Accordingly we have focused our 
attention on potential reactions of ligand C-H bonds. The methyl 
complex Cp2Zr(CH3)(THF)+ (1) reacts (<20 min, 20 0C) with 
a-picoline in CH2Cl2 solution to yield CH4 (0.95 equiv, Toepler 
pump) and r;2-picolyl complex 2 (two isomers, ca. 1/1, >90% 
NMR, 84% isolated), eq I.10 Analogous complexes are formed 
in the reactions of Cp*2MR (M = Lu, Sc, Y, Ti) complexes with 
pyridines.11 1H NMR monitoring of the reaction in eq 1 reveals 
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shifts in the resonances of 1 and a-picoline consistent with the 
formation of intermediate picoline complex 3 prior to aryl C-H 
activation. 

Like the isoelectronic benzyne complexes Cp2Zr(^-C6H4)(L) 
and related compounds,12 2 reacts with unsaturated substrates 
via insertion into the Zr-C bond. For example, reaction with 
propene (45 min, 23 0C, 1 atm) produces 4 (100% NMR, 90% 
isolated) which has a chelated structure (eq 2). This reaction is 
inhibited by THF which suggests that THF dissociation precedes 
insertion. 

Cp2Zr. (2) 

We explored several approaches to incorporation of the clean 
propene/picoline coupling reaction represented by eq 1 and 2 into 
a catalytic process. Previously we observed that Cp 2 Zr(R) (L) + 

species in which L is a simple 2e" donor (e.g., PMe3) react rapidly 
with H 2 to produce R - H and cationic Zr hydrides.8f On this basis 
we hypothesized that 4 should undergo rapid hydrogenolysis to 
produce Cp2Zr(H)(6-Me,2-'Pr-pyridine)+ (5) and that the cata­
lytic cycle in Scheme I would be completed by subsequent ligand 
exchange, H 2 elimination ( C - H abstraction), and insertion steps. 

Coupling of propene and a-picoline is indeed catalyzed by 4 
in the presence of H 2 as shown in eq 3. Noteworthy features of 

^ 

cal 4 , H5 

(3) 

this reaction include moderate catalytic activity (1-2 t.o./h at 23 
3C; activity sensitive to Phydrogen> P] propene' and [picoline]), long 
catalyst lifetime (> 40 to.; catalysis proceeds until propene or 
picoline is consumed), and high selectivity (no other picoline 
derived products are observed). In a typical reaction 0.19 g (2.2 
mmol) of a-picoline and 0.065 g (0.096 mmol) of 4 were dissolved 
in CH2Cl2 under ca. 1.5 atm of propene and ca. 1 atm of H2. 
Conversion of picoline to 6-Me,2-'Pr-pyridine was complete (GC) 
after 25 h at 23 0C.13 
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Scheme I 
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The results of stoichiometric model reactions and NMR 
monitoring experiments support the essential features of the 
proposed mechanism in Scheme I. Key observations are as 
follows. (1) Complex 4 is stable in the presence of excess picoline 
(i.e., no 6-Me, 2-'Pr-pyridine is evolved), and H2 is required for 
catalysis. These results imply that Zr-C bond cleavage in 4 occurs 
by hydrogenolysis and not by a C-H abstraction reaction of a 
ring-opened Cp2Zr)CH2CH(Me)(6-Me-pyrid-2-yl)j(picoline)"1" 
species. (2) Reaction of 4 with H2 in CH2Cl2 (<30 min, 20 0C, 
1 atm) produces 6-Me,2-'Pr-pyridine and Cp2ZrCl2. Hydrogen­
olysis of 4 in the presence of ethylene results in rapid formation 
of polyethylene. These results are consistent with the formation 
of 5 which contains a highly labile disubstituted pyridine ligand 
and which thus undergoes rapid reaction with solvent or ethylene.14 

(3) Reaction of 4 with H2 in the presence of 3 equiv of picoline 
yields 6-Me,2-'Pr-pyridine and 7 (two isomers, 3/1, 80% NMR). 
No intermediates are observed when this reaction is monitored 
by 1H NMR. This is consistent with generation of 5 followed by 
rapid ligand substitution and H2 elimination/C-H abstraction. 
The analogous reaction with D2 produces 6-Me,2-'Pr-pyridine 
labeled in the isopropyl methyl position. Catalytic H/D exchange 
of the ortho and methyl hydrogens of the excess picoline (ca. 5 
and 1 t.o./h, respectively at 23 0C) is also observed, indicating 
that the conversion of 6 to 7 is reversible and that activation of 
methyl C-H bonds also occurs. (4) Complex 7, like 2, inserts 
propene to yield 4 (100% NMR, <10 min, 23 0C, 1 atm) and 
1 equiv of a-picoline. By analogy to eq 2, picoline dissociation 
to yield 8 likely precedes insertion.15 (5) Both 4 and 7 are effective 
catalysts. (6) Minor amounts of propane (ca. 10 mol % vs 6-
Me,2-'Pr-pyridine) are formed in the catalytic reactions, consistent 
with the intermediacy of Zr-H species. (7) 1H NMR monitoring 
of catalytic reactions reveals that the only significant Zr species 
present are 4 and/or 7.15 This is consistent with the relative rates 
of the hydrogenolysis (4 to 5) and propene insertion (7 to 4) 
reactions (slow) and ligand exchange (5 to 6) and H2 elimination 
(6 to 7) reactions (fast) established above. 

(14) (a) In CH2Cl2 solution Cp2Zr(R)(THF)+ complexes and "naked" 
Cp2Zr(R)+ complexes decompose to yield Cp2Zr(R)Cl as initial products and 
are efficient ethylene polymerization catalysts.8b (b) Cp2Zr(H)Cl undergoes 
Cl/H exchange with CH2Cl2 to yield Cp2ZrCl2. Buchwald, S. L.; LaMaire, 
S. J.; Nielson, R. B.; Watson, B. T.; King, S. M. Tetrahedron Lett. 1987, 3895. 

(15) Reaction of 2 with picoline also yields 7. In this case significant 
amounts of two additional isomers or oligomers of 7 are also formed. These 
species are the sole products when 2 is reacted with neat picoline, are minor 
products in the reaction of 4 with H2 in the presence of a large excess of 
picoline, and are observed as minor species in catalytic runs containing high 
concentrations of a-picoline. These additional isomers/oligomers do not react 
rapidly with propene. 

Further mechanistic studies of the current system and extensions 
to other substrates are in progress.16 
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(16) Ethylene and 1-butene also are catalytically coupled with picoline. 
Pyridine is not a suitable substrate due to the formation of an unreactive 
nonlabile Cp2Zr(pyridyl)(pyridine)+ species analogous to 7. 
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In connection with our synthetic program we required a means 
to convert an a-sulfonyl anion 1 to a series of vinyl-functionalized 
allylsilanes 9a-e.2 Guided by the observations of Henderickson3a,b 

(1) Syntheses via Vinyl SuIfones. 36. For a review of this area, see: Fuchs, 
P. L.; Braish, T. F. Chem. Rev. 1986, 86, 903. 

(2) Although oxidation of a-sulfonyl anion 1 (see: Baudin, J.-B.; Julia, 
M.; Rolando, C. Tetrahedron Lett. 1985, 26, 2333) to ketone i followed by 
Wittig reaction with substituted trimethylsilylethyl phosphorane reagents ii 
(the parent reagent Z=H is used in this manner, see: Fleming, I.; Marchi, 
D., Jr. Synthesis 1981, 560) represented a formal solution for synthesis of 9, 
we desired a more general method. 

y=/\ — > >=pph3 + o=/\ ;> i 

a. i ii 
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